skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lipton, Jeffrey I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Foams, essential for applications from car seats to thermal insulation, are limited by traditional manufacturing techniques that struggle to produce graded stiffness, a key feature for enhanced functionality. Here, we introduce a novel slicing algorithm for producing heterogeneous foams through viscous thread printing (VTP). Our slicer generates a single, global toolpath for the entire foam volume while modulating the viscous thread’s self-interactions along this path to program stiffness. The slicer integrates multiple meshes into a unified print space and interpolates the print speed and height based on specified mesh parameters to program the desired stiffness variations. Using both qualitative samples and quantitative compression tests, we demonstrate that our slicer can (1) generate foam stiffnesses spanning an order of magnitude, (2) achieve millimeter precision in stiffness control, and (3) continuously vary stiffness between regions of constant stiffness using arbitrary functional forms. 
    more » « less
  2. null (Ed.)